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Abstract: In this paper the finite Fourier cosine transform is presented to obtain solutions for Klein-Gordon 

equations. The finite Fourier cosine transform method was successfully applied to Klein - Gordon equation. The 

initial-boundary value problems for the Klein-Gordon equations are solved on the half range. Such problems posed 

on time-depend domain. The results reveal that the finite Fourier cosine transform is very effective, simple, 

convenient and flexible. 
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1. INTRODUCTION 

In this paper we consider two important equations of mathematical physics, the homogeneous Klein-Gordon equation [11] 

   (   )     (   )   (   )                      ( ) 

and the non-homogeneous Klein-Gordon equation  

   (   )     (   )   (   )                      ( ) 

Which appear in quantum field theory, relativistic physics, dispersive wave-phenomena, plasma physics, and applied 

physical sciences[14]. Several techniques including finite difference, finite element, scattering, decomposition and 

variation iteration using Adomian's polynomials have been used to handle such equations [2,3,11,12]. He [5,14] developed 

the homotopy perturbation technique for solving such physical problems. In recent years, many research workers have 

been paid attention, to study the solutions of partial differential equations by using various methods. Among these are the 

Adonian decomposition method (ADM) [4], He's semi-inverse method [4], the tanh method, the homotopy perturbation 

method (HPM), the differential transform method and the variational iteration method (VIP) [5,8]. He [7,8] developed the 

homotopy perturbation method (HPM) by merging the standard homotopy and perturbation for solving various physical 

problems. Various ways have been proposed recently to deal with these partial differential equations, such as Adomian 

decomposition method. In this work we apply the finite Fourier sine transform method to solve homogeneous and non-

homogeneous linear Klein-Gordon equations [13]. 

2. THE FINITE FOURIER SINE TRANSFORM 

Definition (1): 

The finite Fourier cosine transform of a function  (   )  

is defined by[9]: 

  ( (   ))   ∫  (   )    (
   

 
)  

 

 

       ( ) 

where   is an integer. The function  (   ) is then called the inverse finite Fourier cosine transform and is given by: 
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 (   )  
 

 
 ∑  ( (   ))    (

   

 
)

 

   

        ( ) 

Definition (2): 

If   is some function of   and  , then finite Fourier cosine of 
   

   
 for       and     is given by [10]: 

  (
   (   )

   
)  

     

  
  ( (   ))   [  (   )    (   )    (  )]   ( ) 

 

where    denotes the partial derivative with respect to  . 

To illustrate the basic idea of this method, we consider a general non-homogeneous linear partial differential equation of 

the form: 

     (   )      (   )    (   )   (   )         ( ) 

with boundary conditions: 

 (   )    (   )    (   )                       ( ) 

and initial conditions: 

 (   )   ( )                                     ( ) 

  (   )   ( )                                    ( ) 

where    ,and   are constants. Taking the finite Fourier cosine transform of both sides of Eq(6), we obtain 

 
  

   
  ( (   ))  (   

    

  
)  ( (   ))  

  

 
[  (   )    (   )    (  )]     ( (   ))                         (  )  

using the boundary condition (7) and associating like terms, Eq(10)becomes 

 
  

   
  ( (   ))  (   

    

  
)  ( (   ))     ( (   ))         (  ) 

which is a second order ordinary differential equation, and has the following solutions:  

Case1: if    
    

  
 then, solution of Eq(11)is: 

  ( (   ))       (   )       (   )    (  )         (  )  

Case2: if    
    

  
 then, solution of Eq(11) is: 

  ( (   ))        (   )        (   )    (  )       (  ) 

where    √
         

   
 and   ( ) is the particular solution of Eq(11). 

It is easy to show that      ( )   ( )  and    
  ( )  ( )

  
 by applying the finite Fourier transform to the initial 

conditions (8) and (9). 

Case3: if    
    

  
, then the solution of Eq(11) is: 

  ( (   ))   ( )    ( )
 

 
∫(   )   ( (   ))       

 

 

 (  ) 

Taking the inverse finite Fourier sine transform to get the final solution using Eq(4). 



International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 5, Issue 2, pp: (101-107), Month: October 2017 - March 2018, Available at: www.researchpublish.com 

 

Page | 103 
Research Publish Journals 

 

3.  APPLICATIONS 

The finite Fourier transforms are used to solve differential equations arising in boundary value problems of physics and 

mechanics [9]. In this section we will apply the finite Fourier sine transform to solve homogeneous and non-homogeneous 

linear Klein-Gordon equations [12]: 

3.1 Example: 

Consider the following boundary value problem [9] 

   

   
   

   

   
                                 (  ) 

with boundary conditions: 

 (   )    (   )    (   )                        (  ) 

and initial conditions: 

 (   )                                       (  ) 

  (   )       (  )       (   )      (   )    (  ) 

Taking finite Fourier cosine transform of both sides of Eq(15), and using Eq(5) (with    ), we obtain 

  

   
  ( (   ))    [ 

    

 
  ( (   ))  [  (   )    (   )    (  )]]   (  ) 

then, using the boundary conditions (16), Eq(18) becomes 

  

   
  ( (   ))   

  

 
      ( (   ))                 (  ) 

which is a second order ordinary differential equation, and has a solution 

  ( (   ))      (
   

 
  )      (

   

 
  )          (  ) 

where   and   are arbitrary constants of integration. 

Using conditions (17) and Eq(21), we have 

  ( (   ))                                (  ) 

and using condition (18) with Eq(21), we obtain: 

  ( (   ))   
   

 
     

   

 
       (     (  )       (   )      (   ) )  (  ) 

Hence 

  

{
  
 

  
 

 

  
                

 

 
                   

  

  
                    

                                

                      (  )   

Therefore 

  ( (   ))  

{
  
 

  
 

 

  
    (   )               

 

 
    (    )                   

  

  
    (    )                   

                                  

            (  )  

Taking inverse Fourier sine transform of Eq(23), we obtain 
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 (   )  
 

 
    (   )    (  )   

 

  
    (    )    (   )  

  

  
    (    )    (  )  

which is the required solution. 

3.2 The homogeneous linear Klein-Gordon equation: 

We next investigate the Klein-Gordon equation[1,13]: 

 

   (   )     (   )   (   )                       (  ) 

with boundary conditions: 

 (   )    (   )    (   )                        (  ) 

and initial condition: 

 (   )                                                         (  ) 

  (   )                                                       (  ) 

Taking finite Fourier sine transform of both sides of Eq(25), and using Eq(5), we obtain 

  (   (   ))  
     

  
  (   (   ))  [  (   )    (   )    (  )]    (   (   ))(   )                    (  ) 

Then using the boundary conditions (28) and associating like terms, we get 

  

   
  ( (   ))  (

    

  
  )  ( (   ))            (  ) 

or 

  

   
  ( (   ))  (

       

  
)  ( (   ))           (  ) 

which is a second order homogeneous ordinary differential equations, and has a solution: 

  ( (   ))       (   )       (   )                (  )  

where 

   
√       

 
                         (  ) 

   and    are arbitrary constants of integration, taking finite Fourier sine transform of the initial conditions (29), we get 

                                                              (  ) 

then Eq(33) becomes: 

  ( (   ))       (   )                      (  ) 

Using initial condition (30), we obtain 

   
  

      
(   (  )    )                   (  ) 

then Eq(37) becomes 

  ( (   ))  
  

      
(   (  )    )    (   )      (  ) 

Taking inverse Fourier sine transform of Eq(39), we get 
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 (   )  
 

 
∑

  

      
(   (  )   )    (   )    (

  

 
 ) 

 

   

        (  ) 

since  (   )    from (25) or 

 (   )  
   

 
 ∑

(   (  )   )

  √       
    (

√       

 
 )    (

  

 
 ) 

 

   

    (  ) 

which is the required solution. 

3.3 The in-homogeneous linear Klein-Gordon equation: 

  We next consider the in-homogeneous linear Klein-Gordon equation [1,13]: 

   (   )     (   )   (   )                        (  ) 

with boundary conditions: 

 (   )    (   )     (   )                          (  ) 

and initial conditions: 

 (   )                                                    (  ) 

   (   )                                                      (  )  

Taking finite Fourier cosine transform of both sides of Eq(42), and using Eq(5), we obtain 

  (   (   ))  
     

  
  ( (   ))  

  

 
 [ (   )   (   )    (  )]    ( (   ))    (      )      (  )  

Then using the boundary conditions (43) and associating like terms, we get 

  

   
  ( (   ))  (

       

  
)   ( (   ))     (     )       (  )  

the right hand side can be calculated as follows: 

  (     )  ∫      
 

 

   (
  

 
 )    

and this gives 

  (     )  
   

       
(   (  )       )                   (  ) 

Hence Eq(43) becomes 

  

   
  ( (   ))  (

       

  
)  ( (   ))  

   

       
(   (  )       )  (  ) 

which is a second order non-homogeneous ordinary differential equations, letting 

   
   

       
                             (  ) 

Assuming  

  ( (   ))                                (  ) 

Then 

  

   
  ( (   ))                                            (  ) 

So from Eq(48), we have 
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(
       

  
)    

   

       
(   (  )       )            (  ) 

or 

   
   

       
(   (  )       )                              (  ) 

Hence the general solution is: 

  ( (   ))       (   )       (   )               (  ) 

 

where    is as defined in Eq(35), and 

    
  
  
 
(   (  )    ( )   )                                    (  ) 

Upon using the initial condition (43) gives 

   
 

  
 (   (  )   )                                             (  ) 

Using condition (42) with (3), we have 

  ( (   ))          ( )  ∫    (
  

 
 )  

 

 

  
 

  
   (

  

 
 )⌋

 

 

    (  ) 

Hence                                   (  ) 

Eq(52) becomes 

  ( (   ))                                             (  ) 

Taking inverse finite Fourier cosine transform, we obtain: 

 (   )  
 

 
∑(       )    (

  

 
 ) 

 

   

               (  ) 

Substituting            in (), we get 

 (   )    ∑
   ( )    (  )

       
(

   

       
    (

√       

 
 ))    (

  

 
 ) 

 

   

(  ) 

which is the required solution. 

4. CONCLUSION 

After the direct application of finite Fourier cosine transform method and from the results obtained, we can say that this 

method is easy to implement and effective. As a result, the conclusion that comes through this work, is that the finite 

Fourier cosine transform method can be applied to other partial differential equation, due to the efficiency and capability in 

the application to get the possible results. 
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